Citations

How to cite

Important

If you find VASPKIT code useful in your work, you should cite our papers and the appropriate references therein

[1] V. Wang, N. Xu, J.C. Liu, G. Tang, W.T. Geng, VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code, Computer Physics Communications 267, 108033 (2021). https://doi.org/10.1016/j.cpc.2021.108033

and state in your manuscript/paper that you have used the VASPKIT program. An appropriate way of acknowledging the use of VASPKIT in your publications would be, for instance, adding a sentence like

We used the VASPKIT code for post-processing of the VASP calculated data.” or “The electronic band calculations were performed with density functional theory (DFT) by combining the Vienna ab initio Simulation package (VASP) with post-processing VASPKIT package.

@article{VASPKIT,
title = {VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code},
journal = {Computer Physics Communications},
volume = {267},
pages = {108033},
year = {2021},
doi = {https://doi.org/10.1016/j.cpc.2021.108033},
author = {Vei Wang and Nan Xu and Jin-Cheng Liu and Gang Tang and Wen-Tong Geng},
}

Cited publications

The VASPKIT program has been cited by more than 2000 times (google scholar) since 2021. Many thanks to the authors! Some of them are listed below.

    1. Yang, Z.-M. Zhang, P.-T. Liu, X.-K. Fu, L. Zuo, et al. Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature, (2023). https://doi.org/10.1038/s41586-023-06509-3

    1. Liu, M. De Bastiani, E. Aydin, G. T. Harrison, et al. Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science, eabn8910 (2022). https://doi.org/10.1126/science.abn8910

    1. Wu, Y.B. Tu, Z.Y. Wang, S.K. Yu, et al. Unidirectional electron–phonon coupling in the nematic state of a kagome superconductor. Nature Physics 19, 1143 (2023). https://doi.org/10.1038/s41567-023-02031-5

    1. Xu, T. Liu, K. Liu, et al. Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nature Materials, (2023). https://doi.org/10.1038/s41563-023-01626-w

    1. Sun, O. J. Silveira, Y. Ma, Y. Hasegawa, et al. On-surface synthesis of disilabenzene-bridged covalent organic frameworks. Nature Chemistry 15, 36 (2023). https://doi.org/10.1038/s41557-022-01071-3

    1. Li, X. Deng, Z. Shi, S. Wu, et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nature Photonics 17, 478 (2023). https://doi.org/10.1038/s41566-023-01180-6

    1. Wang, Y. Wang, J. Wang, et al. Rational design of perovskite ferrites as high-performance proton-conducting fuel cell cathodes. Nature Catalysis 5, 777 (2022). https://doi.org/10.1038/s41929-022-00829-9

    1. Li, F. Xu, X. Tang, S. Dai, T. Pu, X. Liu, et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nature Catalysis 5, 99 (2022). https://doi.org/10.1038/s41929-021-00729-4

    1. Zhao, C. Deng, D. Tang, et al. α-Fe2O3 as a versatile and efficient oxygen atom transfer catalyst in combination with H2O as the oxygen source. Nature Catalysis 4, 684 (2021). https://doi.org/10.1038/s41929-021-00659-1

    1. Zhu, X. Song, F. Liao, H. Huang, Q. Shao, K. Feng, et al. Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide. Nature Communications 14, 5365 (2003). https://doi.org/10.1038/s41467-023-41036-9

    1. Wei, Y. Fang, B. Liu, C. Tang, B. Dong, et al. Lattice oxygen-mediated electron tuning promotes electrochemical hydrogenation of acetonitrile on copper catalysts. Nature Communications 14, 3847 (2023). https://doi.org/10.1038/s41467-023-39558-3

    1. Xu, T. Liu, K. Liu, et al. Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nature Materials, (2023). https://doi.org/10.1038/s41563-023-01626-w https://doi.org/10.1038/s41563-023-01626-w

    1. Chen, J. Dong, J. Wu, Q. Shao, N. Luo, et al. Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density. Nature Communications 14, 4210 (2023). https://doi.org/10.1038/s41467-023-39848-w

    1. Li, Z. Qi, Y. Lan, K. Cao, Y. Wen, J. Zhang, et al. Self-aligned patterning of tantalum oxide on Cu/SiO2 through redox-coupled inherently selective atomic layer deposition. Nature Communications 14, 4493 (2023). https://doi.org/10.1038/s41467-023-40249-2

    1. Luo, Y. Han, J. Liu, H. Chen, Z. Huang, et al. A unique van Hove singularity in kagome superconductor CsV3-x Ta x Sb5 with enhanced superconductivity. Nature Communications 14, 3819 (2023). https://doi.org/10.1038/s41467-023-39500-7

    1. Xie, Y.X. Huang, Y.G. Zhang, T.R. Wu, et al. Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes. Nature Communications 14, 2883 (2023). https://doi.org/10.1038/s41467-023-38724-x

    1. Chen,X. Qin, Y. Jiao, P. Peng, et al. Structure-dependence and metal-dependence on atomically dispersed Ir catalysts for efficient n-butane dehydrogenation. Nature Communications 14, 2588 (2023). https://doi.org/10.1038/s41467-023-38361-4

    1. Iqbal Bakti Utama, H.F. Zeng, T. Sadhukhan, A. Dasgupta, S. Carin Gavin, et al. Chemomechanical modification of quantum emission in monolayer WSe2. Nature Communications 14, 2193 (2023). https://www.nature.com/articles/s41467-023-37892-0

    1. Li, H. Wang, Y. Li, H. Ye, et al. Electron transfer rules of minerals under pressure informed by machine learning. Nature Communications 14, 1815 (2023). https://doi.org/10.1038/s41467-023-37384-1

    1. Zhou, J. Gu, J. Wang, A. De Girolamo, S. Yang, et al. High production of furfural by flash pyrolysis of C6 sugars and lignocellulose by Pd-PdO/ZnSO4 catalyst. Nature Communications 14, 1563 (2023). https://doi.org/10.1038/s41467-023-37250-0

    1. Chen, C.J. Ren, L.R. Zhen, X.Y. Xu, et al. Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2. Nature Communications 14, 1117 (2023). https://doi.org/10.1038/s41467-023-36778-5

    1. Liu, P. Liu, D. Meng, T. Zhao, et al. COx hydrogenation to methanol and other hydrocarbons under mild conditions with Mo3S4@ZSM-5. Nature Communications 14, 513 (2023). https://doi.org/10.1038/s41467-023-36259-9

      1. Cao, X. Quan, X.W. Nie, et al. Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nature Communications 14, 172 (2023). https://doi.org/10.1038/s41467-023-35839-z

      1. Zhang, J. Jin, J. M. Chen, Y. Y. Fang, et al. Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction. Nature Communications 13, 6875 (2022). https://doi.org/10.1038/s41467-022-34619-5

    1. Liang, C. Fan, C. Liu, C. Chai, et al. Near-room-temperature martensitic actuation profited from one-dimensional hybrid perovskite structure. Nature Communications 13, 6599 (2022). https://doi.org/10.1038/s41467-022-34356-9

    1. Li, Q. Wan, C. Du, J. Zhao, et al. Layered Pd oxide on PdSn nanowires for boosting direct H2O2 synthesis, Nature Communications 13, 6072 (2022). https://doi.org/10.1038/s41467-022-33757-0

    1. Xia, E. Minamitani, R. Zitko, Z. Liu, et al. Spin-orbital Yu-Shiba-Rusinov states in single Kondo molecular magnet. Nature Communications 13, 6388 (2022). https://doi.org/10.1038/s41467-022-34187-8

    1. Zhang, L. Zhang, J. Liu, C. Zhong, Y. Tu, Li, et al. OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction. Nature communications 13, 5497 (2022). https://www.nature.com/articles/s41467-022-33216-w

    1. Deng, Z. Zheng, J. Li, R. Zhou, X. Chen, D. Zhang, et al. Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers. Nature Communications 131, 4627 (2022). https://doi.org/10.1038/s41467-022-32306-z

    1. Bae, K. Matsumoto, H. Raebiger, et al. K-Point Longitudinal Acoustic Phonons Are Responsible for Ultrafast Intervalley Scattering in monolayer MoSe2. Nature Communications 13, 4279 (2022). https://doi.org/10.1038/s41467-022-32008-6

    1. Meng, B.F. Ding, S.Z. Zhang, Z.H. Zhang, et al. Angstrom-confined catalytic water purification within Co-TiOx laminar membrane nanochannels. Nature communications 13, 4010 (2022). https://doi.org/10.1038/s41467-022-31807-1

    1. Chen, Q. Ma, X. Zheng, Y. Fang, et al. Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity. Nature communications 13, 1-9 (2022). https://doi.org/10.1038/s41467-022-30411-7

    1. Ruan, X. Wang, C. Wang, et al. Selective catalytic oxidation of ammonia to nitric oxide via chemical looping. Nature Communications 13, 718 (2022). https://doi.org/10.1038/s41467-022-28370-0

    1. Bai, J. Wu, X. Su, et al. Electroresistance in multipolar antiferroelectric Cu2Se semiconductor, Nature Communications 12, 1 (2021). https://doi.org/10.1038/s41467-021-27531-x

    1. Liu, J.-A. Wang, et al. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution, Nature Communications 12, 5260 (2021). https://doi.org/10.1038/s41467-021-25647-8

    1. Xian, M. Claassen, et al. Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2, Nature Communications 12, 5644 (2021). https://doi.org/10.1038/s41467-021-25922-8

    1. Bao, Y. Qiu, X. Peng, et al. Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. Nature Communications 12, 238 (2021). https://doi.org/10.1038/s41467-020-20336-4

    1. Li, D. Rao, J. Zhou, et al. Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nature Communications 12, 3102 (2021). https://doi.org/10.1038/s41467-021-23349-9

    1. Yu, W. Liu, S.-W. Ke, M. Kurmoo, J.-L. Zuo, Q. Zhang, Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nature Communications 11, 5534 (2020). https://doi.org/10.1038/s41467-020-19315-6

    1. Wu, L. Lin, J. Liu, J. Zhang, F. Zhang, et al. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation, Nature Communications 11, 5767 (2020). https://doi.org/10.1038/s41467-020-19634-8

    1. Liu, H. Li, J. Zhong, K. Xu, et al. A crystal glass–nanostructured Al-based electrocatalyst for hydrogen evolution reaction. Science Advances 8, eadd6421 (2022). https://doi.org/10.1126/sciadv.add6421

    1. Peng, R. Xie, Z. Wang, et al. Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Science Advances 7, eabf7358 (2021). https://doi.org/10.1126/sciadv.abf7358

    1. Ohtsuka, N. Kanazawa, M. Hirayama, et al. Emergence of spin-orbit coupled ferromagnetic surface state derived from Zak phase in a nonmagnetic insulator FeSi, Science Advances 7, eabj0498 (2021). https://doi.org/10.1126/sciadv.abj0498

      1. Yang, K. Y. He, J. Koo, S. W. Shen, et al. Visualization of Chiral Electronic Structure and Anomalous Optical Response in a Material with Chiral Charge Density Waves. Physical Review Letters 129, 156401 (2022). https://doi.org/10.1103/PhysRevLett.129.156401

    1. Zhao, X. Liu, Y. Wang, Y. Yang, et al. Zeeman Effect in Centrosymmetric Antiferromagnetic Semiconductors Controlled by an Electric Field. Physical Review Letters 129, 187602 (2022). https://doi.org/10.1103/PhysRevLett.129.187602

    1. Yoshida, H. Akamatsu, and K. Hayashi, Electronic Origin of Non-Zone-Center Phonon Condensation: Octahedral Rotation as a Case Study. Physical Review Letters 127, 215701 (2021). https://doi.org/10.1103/PhysRevLett.127.215701

    1. Cheng, B.F. Miao, Z. Liu, M. Yang, K. He, Y.L. Zeng, et al. Coherent Picture on the Pure Spin Transport between Ag/Bi and Ferromagnets. Physical Review Letters 129, 097203 (2022). https://doi.org/10.1103/PhysRevLett.129.097203

    1. Zhang, Y. Wang, Q. Zeng, J. Sheng, et al. Scaling of Berry-curvature monopole dominated large linear positive magnetoresistance. PNAS 119, e2208505119 (2022). https://doi.org/10.1073/pnas.2208505119

    1. Liu, W. Liu, G. Xue, T. Tan, et al. Modulating Charges of Dual Sites in Multivariate Metal–Organic Frameworks for Boosting Selective Aerobic Epoxidation of Alkenes. Journal of the American Chemical Society 145, 11085–11096 (2023). https://doi.org/10.1021/jacs.3c00460

    1. Chen, Y. Wang, and R. Dronskowski. Computational Design and Theoretical Properties of WC3N6, an H-Free Melaminate and Potential Multifunctional Material. Journal of the American Chemical Society 145, 6986–6993 (2023). https://doi.org/10.1021/jacs.3c00631

    1. Li, C. Liu, C. Gu, J.H. Choi, et al. Interlayer Charge Transfer Regulates Single-Atom Catalytic Activity on Electride/Graphene 2D Heterojunctions. Journal of the American Chemical Society 145, 4774–4783 (2023). https://doi.org/10.1021/jacs.2c13596

    1. Peng. Monolayer Fullerene Networks as Photocatalysts for Overall Water Splitting. Journal of the American Chemical Society 144, 19921−19931 (2022). https://doi.org/10.1021/jacs.2c08054

    1. Huang, X. Li, Y. Tao, et al. Understanding Electron–Phonon Interactions in 3D Lead Halide Perovskites from the Stereochemical Expression of 6s2 Lone Pairs. Journal of the American Chemical Society 144, 12247–12260 (2022). https://doi.org/10.1021/jacs.2c00592

    1. Luo, K. Yin, R. Dronskowski, Existence of BeCN2 and Its First-Principles Phase Diagram: Be and C Introducing Structural Diversity. Journal of the American Chemical Society 144, 5155–5162 (2022). https://doi.org/10.1021/jacs.2c00592

    1. Han, C. Feng, M. H. Du, et al. Design of High-Performance Lead-Free Quaternary Antiperovskites for Photovoltaics via Ion Type Inversion and Anion Ordering. Journal of the American Chemical Society 143, 12369–12379 (2021). https://doi.org/10.1021/jacs.1c06403

    1. Luo, X. Qiao, R. Dronskowski, Predicting Nitrogen-based Families of Compounds: Transition-metal Guanidinates TCN3 (T= V, Nb, Ta) and Ortho-nitrido Carbonates T2CN4 (T= Ti, Zr, Hf), Angewandte Chemie 60, 486 (2020). https://doi.org/10.1002/anie.202011196

Note

More cited papers can be found in Google Scholar.

(to be updated)