Citations

How to cite

If you find VASPKIT code useful in your work, you should cite our papers and the appropriate references therein

[1] V. Wang, N. Xu, J.C. Liu, G. Tang, W.T. Geng, VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code, arXiv:1908.08269

@misc{vaspkit,
      title={VASPKIT: A User-friendly Interface Facilitating High-throughput Computing and Analysis Using VASP Code},
      author={Vei Wang and Nan Xu and Jin Cheng Liu and Gang Tang and Wen-Tong Geng},
      year={2020},
      eprint={1908.08269},
      archivePrefix={arXiv},
      primaryClass={cond-mat.mtrl-sci}
      url = "https://arxiv.org/abs/1908.08269",
}

and state in your manuscript/paper that you have used the VASPKIT program. An appropriate way of acknowledging the use of VASPKIT in your publications would be, for instance, adding a sentence like

We used the VASPKIT code for postprocessing of the VASP calculated data.

Cited publications

VASPKIT code was cited in the following published papers. Many thanks to the authors!

    1. Bao, Y. Qiu, X. Peng, et al., Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. Nat. Commun. 12, 238 (2021). https://doi.org/10.1038/s41467-020-20336-4

    1. Yu, W. Liu, S.-W. Ke, M. Kurmoo, J.-L. Zuo, Q. Zhang, Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch, Nat. Commun. 11 (1) (2020) 5534. https://doi.org/10.1038/s41467-020-19315-6

    1. Wu, L. Lin, J. Liu, J. Zhang, F. Zhang, T. Zhou, N. Rui, S. Yao, Y. Deng, F. Yang, W. Xu, J. Luo, Y. Zhao, B. Yan, X.-D. Wen, Jose A. Rodriguez, D. Ma, Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation, Nat. Commun. 11 (1) (2020) 5767. https://doi.org/10.1038/s41467-020-19634-8

    1. Luo, X. Qiao, R. Dronskowski, Predicting Nitrogen-based Families of Compounds: Transition-metal Guanidinates TCN3 (T= V, Nb, Ta) and Ortho-nitrido Carbonates T2CN4 (T= Ti, Zr, Hf), Angew. Chem. Int. Ed. (2020) 202011196. https://doi.org/10.1002/anie.202011196

    1. Wang, P. Wu, Z. Wang, M. Luo, F. Zhong, X. Ge, K. Zhang, M. Peng, Y. Ye, Q. Li, H. Ge, J. Ye, T. He, Y. Chen, T. Xu, C. Yu, Y. Wang, Z. Hu, X. Zhou, C. Shan, M. Long, P. Wang, P. Zhou, W. Hu, Air-Stable Low-Symmetry Narrow-Bandgap 2D Sulfide Niobium for Polarization Photodetection, Adv. Mater. (2020) 2005037. https://doi.org/10.1002/adma.202005037

    1. Liu, Z. Hu, Y. Wu, J. Zhang, Y. Zhang, B. Cui, C. Liu, S. Hu, N. Zhao, X. Han, A. Cao, Y. Chen, Y. Deng, W. Hu, Dislocation-Strained IrNi Alloy Nanoparticles Driven by Thermal Shock for the Hydrogen Evolution Reaction, Adv. Mater. (2020) 2006034. https://doi.org/10.1002/adma.202006034

    1. Zhang, J. Ma, R. Li, H. Jiao, Hydrocracking of Fused Aromatic Hydrocarbons Catalyzed by Al-Substituted HZSM-5A Case Study of 9,10-Dihydroanthracene, ACS Catal. 10 (16) (2020) 9215-9226. https://doi.org/10.1021/acscatal.0c00946

    1. Sheng, Y. He, J. Li, C. Yuan, H. Huang, S. Wang, Y. Sun, Z. Wang, F. Dong, Identification of Halogen-Associated Active Sites on Bismuth-Based Perovskite Quantum Dots for Efficient and Selective CO2-to-CO Photoreduction, ACS Nano 14 (10) (2020) 13103-13114. https://doi.org/10.1021/acsnano.0c04659

    1. Meng, B. Li, Q. Wang, J. Hao, B. Huang, F. L. Gu, H. Xu, P. Liu, Y. Tong, Large-Scale Electric-Field Confined Silicon with Optimized Charge-Transfer Kinetics and Structural Stability for High-Rate Lithium-Ion Batteries, ACS Nano 14 (6) (2020) 7066-7076. https://doi.org/10.1021/acsnano.0c01796

    1. Huang, J. Zhao, Y. Du, C. Zhou, M. Zhang, Z. Wang, Y. Weng, J. Long, J. Hofkens, J. A. Steele, M. B. J. Roeaers, Direct Z-Scheme Heterojunction of Semicoherent FAPbBr3/Bi2WO6 Interface for Photoredox Reaction with Large Driving Force, ACS Nano (Jun. 2020). https://doi.org/10.1021/acsnano.0c03146

    1. Hou, Q. Yao, C.-S. Zhou, X.-M. Ma, M. Han, Y.-J. Hao, X. Wu, Y. Zhang, H. Sun, C. Liu, Y. Zhao, Q. Liu, J. Lin, Te-Vacancy-Induced Surface Collapse and Reconstruction in Antiferromagnetic Topological Insulator MnBi2Te4, ACS Nano 14 (9) (2020) 11262-11272. https://doi.org/10.1021/acsnano.0c03149

    1. Chen, O. Skibitzki, L. Pedesseau, A. Létoublon, J. Stervinou, R. Bernard, C. Levallois, R. Piron, M. Perrin, M. A. Schubert, et al., Strong ElectronPhonon Interaction in 2D Vertical Homovalent IIIV Singularities, ACS Nano 14 (10) (2020) 13127-13136. https://doi.org/10.1021/acsnano.0c04702

    1. Jin, M. Cheng, H. Liu, M. Ouzounian, T. S. Hu, B. You, G. Shao, X. Liu, Y. Liu, H. Li, S. Li, J. Guan, S. Liu,Na2SO4-Regulated High-Quality Growth of Transition Metal Dichalcogenides by Controlling Diffusion, Chem. Mater. 32 (13) (2020) 5616-5625. https://doi.org/10.1021/acs.chemmater.0c01089

    1. Xu, L. Li, Y. He, Y. Tong, Y. Lu, Understanding the molecular mechanism of lithium deposition for practical high-energy lithium-metal batteries, J. Mater. Chem. A 8 (2020) 6229-6237. https://doi.org/10.1039/D0TA01044H

    1. Wang, Y. C. Liu, Y. Kawazoe, W. T. Geng, Role of Interlayer Coupling on the Evolution of Band Edges in Few-Layer Phosphorene, J. Phys. Chem. Lett. 6 (24) (2015) 4876-4883. https://doi.org/10.1021/acs.jpclett.5b02047

    1. Sugathan, B. Bhattacharyya, V. V. R. Kishore, A. Kumar, G. P. Rajasekar, D. D. Sarma, A. Pandey, Why Does CuFeS2 Resemble Gold?, J. Phys. Chem. Lett. 9 (4) (2018) 696-701. https://doi.org/10.1021/acs.jpclett.7b03190

    1. Li, R. Long, Q. Yao, Z. Zhu, Q. Mi, Band Alignment Boosts Charge-Carrier Collection in Sn-based Perovskite over Pb Counterparts, J. Phys. Chem. Lett. 10 (13) (2019) 3699-3703. https://doi.org/10.1021/acs.jpclett.9b01405

      1. Kuklin, L. Gao, H. Zhang, H. Agren, Two-Dimensional Gold Halides: Novel Semiconductors with Giant Spin-Orbit Splitting and Tunable Optoelectronic Properties, J. Phys. Chem. Lett. 11 (2020) 9759-9765. https://doi.org/10.1021/acs.jpclett.0c02788

      1. Geng, V. Wang, Y. C. Liu, T. Ohno, J. Nara, Moire Potential, Lattice Corrugation, and Band Gap Spatial Variation in a Twist-Free MoTe2/MoS2 Heterobilayer, J. Phys. Chem. Lett. 11 (7) (2020) 2637-2646. https://doi.org/10.1021/acs.jpclett.0c00605

      1. Mohanta, A. De Sarkar, Coupled spin and valley polarization in monolayer HfN2 and valley-contrasting physics at the HfN2-WSe2 interface, Phys. Rev. B 102 (2020) 125414. https://doi.org/10.1103/PhysRevB.102.125414

    1. Kingsland, K. A. Lynch, S. Lisenkov, X. He, I. Ponomareva, Comparative study of Minnesota functionals performance on ferroelectric BaTiO3 and PbTiO3, Phys. Rev. Materials 4 (2020) 073802. https://doi.org/10.1103/PhysRevMaterials.4.073802

    1. Zhong, K. Huang, G. Yu, S. Yuan, Electronic and mechanical properties of few-layer borophene, Phys. Rev. B 98 (2018) 054104. https://doi.org/10.1103/PhysRevB.98.054104

More cited papers can be found in Google Scholar.

(to be updated)