Citations

How to cite

Important

If you find VASPKIT code useful in your work, you should cite our papers and the appropriate references therein

[1] V. Wang, N. Xu, J.C. Liu, G. Tang, W.T. Geng, VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code, Computer Physics Communications 267, 108033 (2021). https://doi.org/10.1016/j.cpc.2021.108033

and state in your manuscript/paper that you have used the VASPKIT program. An appropriate way of acknowledging the use of VASPKIT in your publications would be, for instance, adding a sentence like

We used the VASPKIT code for postprocessing of the VASP calculated data.

@article{VASPKIT,
title = {VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code},
journal = {Computer Physics Communications},
volume = {267},
pages = {108033},
year = {2021},
doi = {https://doi.org/10.1016/j.cpc.2021.108033},
author = {Vei Wang and Nan Xu and Jin-Cheng Liu and Gang Tang and Wen-Tong Geng},
}

Cited publications

The VASPKIT program has been cited by more than 510 times (google scholar) since 2020. Many thanks to the authors! Some of them are listed below.

    1. Zhao, C. Deng, D. Tang, et al. α-Fe2O3 as a versatile and efficient oxygen atom transfer catalyst in combination with H2O as the oxygen source. Nature Catalysis 4, 684–691 (2021). https://doi.org/10.1038/s41929-021-00659-1

    1. Peng, R. Xie, Z. Wang, et al. Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Science Advances 7, eabf7358 (2021). https://doi.org/10.1126/sciadv.abf7358

    1. Liu, J.-A. Wang, et al. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution, Nat. Commun. 12, 5260 (2021). https://doi.org/10.1038/s41467-021-25647-8

    1. Xian, M. Claassen, et al. Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2, Nat. Commun. 12, 5644 (2021). https://doi.org/10.1038/s41467-021-25922-8

    1. Bao, Y. Qiu, X. Peng, et al., Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. Nat. Commun. 12, 238 (2021). https://doi.org/10.1038/s41467-020-20336-4

    1. Li, D. Rao, J. Zhou, et al., Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nat. Commun. 12, 3102 (2021). https://doi.org/10.1038/s41467-021-23349-9

    1. Yu, W. Liu, S.-W. Ke, M. Kurmoo, J.-L. Zuo, Q. Zhang, Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch, Nat. Commun. 11, 5534 (2020). https://doi.org/10.1038/s41467-020-19315-6

    1. Wu, L. Lin, J. Liu, J. Zhang, F. Zhang, T. Zhou, N. Rui, S. Yao, Y. Deng, F. Yang, W. Xu, J. Luo, Y. Zhao, B. Yan, X.-D. Wen, Jose A. Rodriguez, D. Ma, Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation, Nat. Commun. 11, 5767 (2020). https://doi.org/10.1038/s41467-020-19634-8

    1. Yoshida, H. Akamatsu, and K. Hayashi, Electronic Origin of Non-Zone-Center Phonon Condensation: Octahedral Rotation as a Case Study, Phys. Rev. Lett. 127, 215701 (2021). https://doi.org/10.1103/PhysRevLett.127.215701

    1. Han, C. Feng, M. H. Du, et al. Design of High-Performance Lead-Free Quaternary Antiperovskites for Photovoltaics via Ion Type Inversion and Anion Ordering. Journal of the American Chemical Society 143, 12369–12379 (2021). https://doi.org/10.1021/jacs.1c06403

    1. Luo, X. Qiao, R. Dronskowski, Predicting Nitrogen-based Families of Compounds: Transition-metal Guanidinates TCN3 (T= V, Nb, Ta) and Ortho-nitrido Carbonates T2CN4 (T= Ti, Zr, Hf), Angew. Chem. Int. Ed. (2020) 202011196. https://doi.org/10.1002/anie.202011196

    1. Wang, P. Wu, Z. Wang, M. Luo, F. Zhong, X. Ge, K. Zhang, M. Peng, Y. Ye, Q. Li, H. Ge, J. Ye, T. He, Y. Chen, T. Xu, C. Yu, Y. Wang, Z. Hu, X. Zhou, C. Shan, M. Long, P. Wang, P. Zhou, W. Hu, Air-Stable Low-Symmetry Narrow-Bandgap 2D Sulfide Niobium for Polarization Photodetection, Adv. Mater. (2020) 2005037. https://doi.org/10.1002/adma.202005037

    1. Liu, Z. Hu, Y. Wu, J. Zhang, Y. Zhang, B. Cui, C. Liu, S. Hu, N. Zhao, X. Han, A. Cao, Y. Chen, Y. Deng, W. Hu, Dislocation-Strained IrNi Alloy Nanoparticles Driven by Thermal Shock for the Hydrogen Evolution Reaction, Adv. Mater. (2020) 2006034. https://doi.org/10.1002/adma.202006034

    1. Zhang, J. Ma, R. Li, H. Jiao, Hydrocracking of Fused Aromatic Hydrocarbons Catalyzed by Al-Substituted HZSM-5A Case Study of 9,10-Dihydroanthracene, ACS Catal. 10 (16) (2020) 9215-9226. https://doi.org/10.1021/acscatal.0c00946

    1. Sheng, Y. He, J. Li, C. Yuan, H. Huang, S. Wang, Y. Sun, Z. Wang, F. Dong, Identification of Halogen-Associated Active Sites on Bismuth-Based Perovskite Quantum Dots for Efficient and Selective CO2-to-CO Photoreduction, ACS Nano 14 (10) (2020) 13103-13114. https://doi.org/10.1021/acsnano.0c04659

    1. Gu, Z. Zhao, J. Huang, et al. MX Anti-MXenes from Non-van der Waals Bulks for Electrochemical Applications: The Merit of Metallicity and Active Basal Plane. ACS Nano, 2021. https://doi.org/10.1021/acsnano.0c08429

    1. Meng, B. Li, Q. Wang, J. Hao, B. Huang, F. L. Gu, H. Xu, P. Liu, Y. Tong, Large-Scale Electric-Field Confined Silicon with Optimized Charge-Transfer Kinetics and Structural Stability for High-Rate Lithium-Ion Batteries, ACS Nano 14 (6) (2020) 7066-7076. https://doi.org/10.1021/acsnano.0c01796

    1. Huang, J. Zhao, Y. Du, C. Zhou, M. Zhang, Z. Wang, Y. Weng, J. Long, J. Hofkens, J. A. Steele, M. B. J. Roeaers, Direct Z-Scheme Heterojunction of Semicoherent FAPbBr3/Bi2WO6 Interface for Photoredox Reaction with Large Driving Force, ACS Nano (Jun. 2020). https://doi.org/10.1021/acsnano.0c03146

    1. Hou, Q. Yao, C.-S. Zhou, X.-M. Ma, M. Han, Y.-J. Hao, X. Wu, Y. Zhang, H. Sun, C. Liu, Y. Zhao, Q. Liu, J. Lin, Te-Vacancy-Induced Surface Collapse and Reconstruction in Antiferromagnetic Topological Insulator MnBi2Te4, ACS Nano 14 (9) (2020) 11262-11272. https://doi.org/10.1021/acsnano.0c03149

    1. Chen, O. Skibitzki, L. Pedesseau, A. Létoublon, J. Stervinou, R. Bernard, C. Levallois, R. Piron, M. Perrin, M. A. Schubert, et al., Strong Electron Phonon Interaction in 2D Vertical Homovalent IIIV Singularities, ACS Nano 14 (10) (2020) 13127-13136. https://doi.org/10.1021/acsnano.0c04702

    1. Jin, M. Cheng, H. Liu, M. Ouzounian, T. S. Hu, B. You, G. Shao, X. Liu, Y. Liu, H. Li, S. Li, J. Guan, S. Liu,Na2SO4-Regulated High-Quality Growth of Transition Metal Dichalcogenides by Controlling Diffusion, Chem. Mater. 32 (13) (2020) 5616-5625. https://doi.org/10.1021/acs.chemmater.0c01089

    1. Xu, L. Li, Y. He, Y. Tong, Y. Lu, Understanding the molecular mechanism of lithium deposition for practical high-energy lithium-metal batteries, J. Mater. Chem. A 8 (2020) 6229-6237. https://doi.org/10.1039/D0TA01044H

    1. Wang, Y. C. Liu, Y. Kawazoe, W. T. Geng, Role of Interlayer Coupling on the Evolution of Band Edges in Few-Layer Phosphorene, J. Phys. Chem. Lett. 6 (24) (2015) 4876-4883. https://doi.org/10.1021/acs.jpclett.5b02047

    1. Sugathan, B. Bhattacharyya, V. V. R. Kishore, A. Kumar, G. P. Rajasekar, D. D. Sarma, A. Pandey, Why Does CuFeS2 Resemble Gold?, J. Phys. Chem. Lett. 9 (4) (2018) 696-701. https://doi.org/10.1021/acs.jpclett.7b03190

    1. Li, R. Long, Q. Yao, Z. Zhu, Q. Mi, Band Alignment Boosts Charge-Carrier Collection in Sn-based Perovskite over Pb Counterparts, J. Phys. Chem. Lett. 10 (13) (2019) 3699-3703. https://doi.org/10.1021/acs.jpclett.9b01405

      1. Kuklin, L. Gao, H. Zhang, H. Agren, Two-Dimensional Gold Halides: Novel Semiconductors with Giant Spin-Orbit Splitting and Tunable Optoelectronic Properties, J. Phys. Chem. Lett. 11 (2020) 9759-9765. https://doi.org/10.1021/acs.jpclett.0c02788

      1. Geng, V. Wang, Y. C. Liu, T. Ohno, J. Nara, Moire Potential, Lattice Corrugation, and Band Gap Spatial Variation in a Twist-Free MoTe2/MoS2 Heterobilayer, J. Phys. Chem. Lett. 11 (7) (2020) 2637-2646. https://doi.org/10.1021/acs.jpclett.0c00605

      1. Mohanta, A. De Sarkar, Coupled spin and valley polarization in monolayer HfN2 and valley-contrasting physics at the HfN2-WSe2 interface, Phys. Rev. B 102 (2020) 125414. https://doi.org/10.1103/PhysRevB.102.125414

    1. Jiang, L.-L. Kang, X.-H. Zheng, Z. Zeng, and S. Sanvito, Phys. Rev. B 102 (2020) 195408, https://doi.org/10.1103/PhysRevB.102.195408

    1. Kingsland, K. A. Lynch, S. Lisenkov, X. He, I. Ponomareva, Comparative study of Minnesota functionals performance on ferroelectric BaTiO3 and PbTiO3, Phys. Rev. Materials 4 (2020) 073802. https://doi.org/10.1103/PhysRevMaterials.4.073802

    1. Zhong, K. Huang, G. Yu, S. Yuan, Electronic and mechanical properties of few-layer borophene, Phys. Rev. B 98 (2018) 054104. https://doi.org/10.1103/PhysRevB.98.054104

    1. Jiang, L.-L. Kang, X.-H. Zheng, Z. Zeng, and S. Sanvito, Computational prediction of a two-dimensional semiconductor SnO2 with negative Poisson’s ratio and tunable magnetism by doping, Phys. Rev. B 102 (2020) 195408, https://doi.org/10.1103/PhysRevB.102.195408

    1. Niu, Z.-F. Zhang, X.-T. Wang, X.-H. Wan, C. Shao, Y.-Z. Guo, Theoretical Insights into the Mechanism of Selective Nitrate‐to‐Ammonia Electroreduction on Single‐Atom Catalysts, Adv. Funct. Mater. (2020) 2008533, https://doi.org/10.1002/adfm.202008533

    1. Xu J.-B. Liu, B.‐X. Liu, B. Huang, Exotic Structural and Optoelectronic Properties of Layered Halide Double Perovskite Polymorphs, Adv. Funct. Mater. (2020) 2008620, https://doi.org/10.1002/adfm.202008620

  1. L.-F. Gao, R. Wang, A. V. Kuklin, H. Zhang, H. Ågren, PbSe Nanocrystals Produced by Facile Liquid Phase Exfoliation for Efficient UV–Vis Photodetectors, Adv. Funct. Mater. (2021) 2010401, https://doi.org/10.1002/adfm.202010401

Note

More cited papers can be found in Google Scholar.

(to be updated)